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Preface 

This report documents analytical studies performed to clarify the mechanisms by which 

sound is generated by nominally steady flow over a rectangular wall cavity.  Chapter 1 

(Mechanism of sound generation by low mach number flow over a wall cavity) has been 

accepted for publication in the Journal of Sound and Vibration. Chapter 2 (Wall-cavity 

acoustic green's function at low mach number) has been published in the International 

Journal of Aeroacoustics 2, 347 - 365, (2003). Chapter 3 (Cavity mode excitation by vortex 

shedding from a cross-beam) has been written with the assistance of Ms Alia Winslow and 

has been submitted for publication under joint authorship in the International Journal of 

Aeroacoustics. 

n 



Report No. AM 04-001 Boston University, College of Engineering 

CHAPTER 1 

MECHANISM OF SOUND GENERATION 

BY LOW MACH NUMBER FLOW OVER 

A WALL CAVITY 
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SUMMARY 

An analysis is made of the mechanism of sound production by nominally steady low Mach 

number flow over a rigid shallow wall cavity. At very low Mach numbers the dominant 

source of sound is the unsteady drag, and the aeroacoustic dipole source accompanying 

this force. A monopole source dependent on the compression of fluid within the cavity is 

smaller by a factor of the order of the flow Mach number M. The directivity of the dipole 

sound peaks in directions upstream and downstream of the cavity, and there is a radiation 

null in the direction normal to the plane of the wall. However, numerical simulations for M 

as small as 0.1 have predicted significant radiation in directions normal to the wall. This 

anomaly is investigated in this chapter by means of an acoustic Green's function tailored 

to cavity geometry that accounts for possible aeroacoustic contributions from both the 

drag-dipole and from the lowest order cavity resonance. The Green's function is used to 

show that these sources are correlated and that their strengths are each proportional to 

the unsteady drag generated by vorticity interacting with the cavity trailing edge. When 

M ~ 0.01, the case in most underwater applications, the monopole strength is always 

negligible (for a cavity with rigid walls). At low Mach numbers exceeding about 0.05 it 

is shown that the cavity monopole radiation is 0{M^) < 1 relative to the dipole at low 

frequencies. At higher frequencies, near the resonance frequency of the cavity, the monopole 

and dipole have similar orders of magnitude, and the combination produces a relatively 

uniform radiation directivity, with substantial energy radiated in directions normal to the 

wall. Illustrative numerical results are given for a wall cavity subject to 'shear layer mode' 

excitation by the Rossiter 'feedback' mechanism. 
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1. INTRODUCTION 

Tonal radiation produced by high Reynolds number mean flow over a rectangular wall 

cavity was originally attributed to broadband excitation of cavity acoustic resonances by 

turbulence in the shear layer over the cavity mouth [l]. However, oscillations can also be 

maintained by a laminar mean flow, and laminar flow resonances are often observed to be 

more intense [2, 3], Tones generated by shallow cavities whose depth d < L = streamwise 

cavity length (Figure 1) generally bear little or no correspondence to cavity modes and are 

not usually harmonically related, but are more closely analogous to the 'edge' tones excited 

when a thin jet impinges on a wedge-shaped knife edge, and maintained via a 'feedback' 

mechanism from the wedge to the jet nozzle. 

A cavity tone of frequency / generated by flow of mean stream velocity U is typically 

found to lie within certain well defined bands of the Strouhal numbers fL/U when plotted 

against flow Mach number.  This is consistent with the 'feedback' scheme proposed by 

Rossiter [1], involving the periodic formation of discrete vortices just downstream of the 

leading edge of the cavity, and their subsequent interaction with the trailing edge after 

convection across the cavity mouth. The impulsive sound generated by this interaction 

propagates upstream within the cavity and causes the boundary layer to separate just 

upstream of the leading edge. The travel time of a vortex across the cavity ~ L/Uc, where 

the convection velocity Uc ^ OAU - 0.6U, and the sound radiates back to the leading edge 

in time L/co, where Co is the speed of sound. The returning sound therefore arrives in time 

to reinforce periodic shedding provided / satisfies [1] 

^ + il«"      n = l, 2, .... (1.1) 
Uc       Co        f 

This formula must be adjusted to obtain detailed agreement with experiment [4-6], by 

replacing n hjn-/3, where /3 (~ 0.25) determines a 'phase lag' /?// equal to the time delay 

between (i) the arrival of a vortex at the trailing edge and the emission of the main acoustic 

pulse, and (ii) the arrival of the sound at the leading edge and the release of new vorticity. 

If account is also taken of the Mach number (i.e. temperature) dependence of the sound 

speed in the cavity, Rossiter's equation (1.1) can be written 

B = -^ ^^—^ ^,    n = i, 2, .... (1.2) 
U \V_, M I 

\Uc^ VH-(7o-l)MV2j 

where M = U/co and % is the ratio of specific heats of the fluid. 
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Predictions of the feedback formula (1.2) for shallow, rectangular cavities with d/L < 1 

agree well with observations at M > 0.2 for P « \ and UJU « 0.6 [6]. The contributions 

from cavity resonances are important only for deep cavities, and appear to be unimportant 

unless d/L > -, when resonances can dominate the radiation provided the Strouhal number 

also satisfies (1.2). An extensive discussion of experimental results relating to this and 

other influences of cavity geometry and mean flow conditions on cavity resonances is given 

by Ahuja and Mendoza [6] for Mach numbers M > 0.2. Research prior to 1980 is reviewed 

by Rockwell [4] and by Rockwell & Naudascher [7], and Grace [8] has summarized recent 

attempts to simulate numerically cavity noise radiation. 

Experiments conducted by Gharib and Roshko [9] in water with a nominally steady 

impinging mean flow (at t/ ~ 1 m/s) have shown that Rossiter feedback resonances are 

related to large fluctuations in the drag experienced by the cavity. They identified two 

hydrodynamic modes of cavity flow oscillations: for 'shorter' cavities relative to the 

upstream boundary layer thickness (and, according to later work [10], for lower Mach 

numbers) the unsteady motion over the cavity mouth has the characteristics of an unstable, 

thin shear layer ('shear layer mode') that generates sound by impingement on the cavity 

trailing edge, essentially in the manner proposed by Rossiter [1].   Recent numerical 

studies of two-dimensional cavity flows by Colonius et al.  [10] predict strong radiation 

preferentially in the upstream direction, from a 'source' centred on the cavity trailing 

edge. Three-dimensional numerical simulations performed by Fuglsang and Cain [11] of 

the acoustic field within a shallow cavity {L/d = 4.5) at M = 0.85 also indicated that 

shear layer instability is the main exciting mechanism, and that it produces a source-like 

periodic addition and removal of mass near the trailing edge. An analytical, but empirical 

representation of this edge source had been previously considered by Tam and Block [12]. 

Flow over longer cavities (or, alternatively, at higher Mach numbers) is characterized 

by a 'wake mode', involving large scale vorticity ejection from the cavity, producing 

quasi-periodic separation upstream of the leading edge. The onset of the wake mode is 

accompanied by a large increase in drag fluctuations. This apparently occurs also at much 

higher Mach numbers. For example, numerical simulations by Zhang [13] for L/d = 3 and 

M = 1.5, 3 reveal that the violent ejection of vorticity is strongly correlated with sign 

reversals of the cavity drag coeflacient. 

The results of the shear layer mode theory of Tam and Block [12] suggested that at 

very low Mach numbers (M < 0.2) cavity acoustic resonances must contribute to the 
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radiation, especially for deeper cavities {L/d < \, say); the 'monopole' nature of such 

resonances would account for a near omni-directional character of the radiation pattern 

observed at certain frequencies. They did not pursue this theoretically, although its likely 

importance had already been anticipated by Plumblee et al. [14] and by East [15]. Similarly, 

experiments of Yu [16] have confirmed that shallow wall cavities in air at Mach numbers 

M ~ 0.1 radiate a substantial amount of radiation directly away from the wall. Numerical 

and experimental studies at low Mach number by Inagaki et al [17] have confirmed this 

conclusion for large cavities with small openings to the mean flow, but shown also how 

coincidence between the cavity resonance and the Rossiter frequency predicted by (1.2) 

resulted in very large amplitude radiation. For shallow cavities trailing edge 'scattering' of 

shear layer pressure fluctuations appears to be the dominant source, even when feedback is 

not important. This is in accord with measurements performed by Jacobs et al. [18] for 

L/d > 7 and M < 0.4, for which the radiation peaked in the upstream and downstream 

directions, although significant radiation in the wall-normal direction was also observed. 

According to the theoretical results of Howe [2], the radiation from a shallow cavity 

at very low Mach number can be ascribed to a dipole source aligned with the mean flow 

direction whose strength is determined by the unsteady drag. The dipole source strength 

is strongly coupled to the hydrodynamic motions in and near the cavity, but is essentially 

the same in character for both the 'shear layer' and 'wake' modes of the cavity oscillations, 

provided M is sufficiently small. The intensity of the dipole radiation peaks in the upstream 

and downstream directions, and is null in directions normal to the wall. 

This conclusion is apparently incompatible with several of the experiments discussed 

above and with recent numerical simulations and observations at low Mach numbers. In 

Hardin and Pope's [19, 20] low Mach number scheme, an incompressible representation 

of the cavity flow is first simulated numerically, and the results are then used to evaluate 

acoustic 'sources' in a modified system of compressible flow equations. At M = 0.1 their 

predictions yield radiation directivities that peak in the upstream direction, but also exhibit 

substantial levels in directions normal to the wall, consistent with the presence of a cavity 

monopole field. Although various details of the approach in [19, 20] have been criticized 

and subjected to modification, for example by Ekaterinaris [21] and by Shen and Sorensen 

[22], the general characteristics of the predicted radiation are probably correct in an overall 

sense, if not in detail. Indeed, they accord with later numerical studies (also based on an 

initial determination of an incompressible approximation of the cavity flow) by Grace et al 
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[23] and by Curtis Granda [24], that similarly predict large amplitude radiation normal to 

the wall. 

The purpose of the present chapter is to resolve these apparent inconsistencies between 

numerical and analytical predictions at low Mach numbers. It will be shown that the low 

Mach number dipole radiation, peaking in directions upstream and downstream of the 

cavity, is indeed the dominant source at very low Mach numbers, typically much smaller than 

M = 0.1, however. Thus, it is this source that determines cavity radiation in underwater 

applications (where M ~ 0.01) provided, of course, that the cavity walls are sufficiently 

'rigid' to preclude monopole sources produced by pulsations in the cavity volume. But, when 

M ~ 0.1 we shall show that the cavity 'Helmholtz' mode, although very weak and formally 

vanishingly small as jL/U -> 0, supplies an additional, omni-directional contribution that 

can exceed the drag dipole radiation over a range of frequencies. Furthermore, it will be 

shown that the monopole and dipole source strengths are both determined at low Mach 

numbers by the cavity drag fluctuations. 

The low Mach number analysis will be framed in terms of the theory of vortex sound 

[3], and the relevant equations are recalled in §2. The possible source types are identified 

by introducing an acoustic Green's function that is valid in the presence of low Mach 

number mean stream flow past the cavity (§3). At very low Mach numbers the acoustic 

amplitudes are always small enough for incompressible flow to be regarded as an excellent 

first approximation to the motion in the cavity. This flow determines the effective vortex 

sound source strengths, irrespective of whether the flow is characterized as 'shear layer' or 

'wake' mode. Predictions of the theory are therefore illustrated in §4 for the simpler case of 

shear mode flow by means of an idealized model of shear layer excitation. 
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2. FORMULATION 

Consider nominally steady, low Mach number, high Reynolds number mean flow in the 

positive a;i-direction of the rectangular coordinates {xi,X2,X3) over the rectangular wall 

cavity of Figure 1. The wall and the interior surfaces of the cavity are assumed to be rigid. 

The fluid has mean density and sound speed respectively equal to po, Co, and the velocity 

in the main stream is U. The cavity has depth d and breadth b, and is aligned with its 

remaining side of length L parallel to the mean flow. The coordinate origin is taken at O in 

the plane of the wall at the centre of the cavity mouth, with the xa-axis normal to the wall 

and directed into the main stream. 

Sound is produced by flow instability in the neighbourhood of the cavity. According to 

Lighthill's acoustic analogy [3], when the total enthalpy B, say, is taken as the acoustic 

variable, the radiation can be expressed in terms of sources that represent excitation by 

vorticity and entropy fluctuations. For a nominally homogeneous flow at low Mach numbers 

the motion may be regarded as homentropic to a good approximation [25]. In that case the 

total enthalpy becomes 
B=/^ + k (2.1) 

J    p       2 

where p is fluid density, p = p{p) the pressure, and v denotes velocity, and Lighthill's 

acoustic analogy equation becomes 

(R (1.R] _ iv • (pV)] B = -div(pu; A v), (2.2) 
\Dt WDtJ     P ) P 

where c is the local speed of sound. In the irrotational acoustic far fleld Crocco's form of 

the momentum equation dw/dt = -V5 implies that B = -dip/dt, where ^(x,t) is the 

velocity potential that determines the whole motion in the irrotational regions of the fluid. 

B is therefore equal to a constant in a steady mean flow, and at large distances from the 

sources perturbations in B represent outgoing sound waves. 

In the particular case of low Mach number flow, when M = U/co is smaller than about 

0.2, say, so that M^ < 1, the characteristics of the motion within and close to the cavity will 

be essentially the same as if the fluid is incompressible, the acoustic component constituting 

a very small perturbation about this motion. We can then replace p and c where they occur 

explicitly in (2.2) by their respective mean values po and c^. On the left hand side we can 

also introduce the approximation (valid to first order in M) 
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where Uo = Uo(x) is the undisturbed local mean velocity, which satisfies Uo -^ (C/,0,0) as 

|x| -> oo. 

Equation (2.2) accordingly reduces to 

At large distances from the cavity fluctuations in B = B{x,t) represent outgoing sound 

waves generated by the vortex source on the right of (2.3) and by its interactions with the 

cavity. B may therefore be assumed to vanish in the absence of radiation from the cavity, 

in which case if p(x,t) now represents the perturbation pressure, it is readily deduced from 

(2.1) that in the acoustic far field ([3], page 161) 

p=- — —,      Ixl-> oo,   where   cos^=-r^. (2.4) 
^     (1 + Mcos^)'      '  ' |x| 
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3   SOLUTION OF THE AERODYNAMIC SOUND EQUATION 

3.1 Green's function 

The steady mean velocity Uo(x) must be irrotational in the absence of sound production 

at the cavity. When M^ < 1 it may be assumed to represent an incompressible flow v^hose 

details near the cavity depend on cavity geometry. To define this flow we introduce the 

Kirchhoff vector X(x) = (Xi(x),0,X3(x)) for the cavity, where Xj [j = 1, 3) is the solution 

of following potential flow problem 

dX- 
V'^Xj = 0,    Xj -^ Xj as |x| -^ oo,   -^ = 0 on S, (3.1) 

where S is the rigid boundary consisting of the wall and cavity surfaces, and x„ is distance 

measured in the normal direction from S. Xj{x) {j = 1, 3) is just the velocity potential 

of flow over the cavity in the j-direction that has unit speed in the j-direction at large 

distances from the cavity. 

Then the mean flow velocity U^ = UVXi{x), which can also be written 

U„ = V{U-X(x)},    where U = (C/,0,0). (3.2) 

To determine the solution of the aerodynamic sound equation (2.3) when Uo is defined 

in this way we consider first the Green's function G{x,y,t- r), which is the solution with 

outgoing wave behaviour when the right hand side of (2.3) is replaced by the point source 

5(x - y)5{t - T). Because B = -d(p/dt for irrotational motions. Green's function G is 

required to have vanishing normal derivative on S. Introduce the transformation [3, 26] 

G(x,y,t - r) = -i- r G(x,y,a.)e-^'^(*-+^-(^-^)/-)c/a;, (3.3) 

where M = U/c,,, and Y = (^1,0,^3) is the Kirchhoff vector expressed in terms of y, then 

when M^ < 1, G satisfies 

{v' + Kl)G = 5{ic-y),     £^ = 0onS, (3.4) 

where «„ = cu/co is the acoustic wavenumber. 

In the cavity radiation problem the source point y is within or near the cavity, and the 

observation point x is in the main stream, at large distances from the cavity. In these 

circumstances an analytical approximation to the solution of (3.4) can be derived by a 

9 
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familiar procedure [3] that involves a straightforward application of the reciprocal theorem 

G(x,y,w) = G(y,x,a;) [27]: the roles of x and y are interchanged in (3.4), which is now to 

be solved as a function of y for the reciprocal configuration in which the source is placed 

at the far field point x. The distant source generates a spherical wave that may be regarded 

as locally plane when it arrives at the wall cavity. This greatly simplifies the problem when 

the characteristic wavelength ~ 2'K/KO of the sound is large compared to the typical cavity 

dimension, which is the case at sufficiently small Mach numbers. We can then anticipate 

that there are two principal contributions to the cavity response to the impinging wave: a 

monopole component produced by a periodic volume flux across the plane of the cavity 

mouth, corresponding to 'breathing' oscillations in the manner of a Helmholtz resonator 

[27], and a dipole field, with dipole axis parallel to the plane of the wall, representing an 

unsteady drag force on the cavity. 

Therefore, in the usual way [3] for y within and near the cavity and |x| -> oo, we put 

G^GO + GM + GT), (3.5) 

where Go represents the uniform pressure produced by the incident wave in the 

neighbourhood of the cavity, and Gu and Go respectively represent the monopole and 

dipole fields near the cavity. 

In the absence of the cavity the exact Green's function is 

G^-—. r-T-rr n    x=(a;i,-0:2,3:3), (3-6) 
47r|x-y|      47r|x-y| 

which satisfies dG/dy2 = 0 on the plane surface y2 = 0 of the wall. When Ko\y\ < 1 and 

Ko|x| » 1 this becomes 

r        e^'^-W     m,(x-f-x)-ye^'-°W , 
^ ~    27rlx| "^ 47r|x|2 ^ ^ ' ^ 

where the terms omitted are of order ~ {Ko\j\f and smaller. The first term on the right 

hand side represents (as a function of y) a uniform pressure fluctuation over the mouth 

of the cavity and must therefore correspond to GQ.  The second term ~ 0(Ko|y|), and 

satisfies as a function of y Laplace's equation to this order. It is the velocity potential of a 

uniform, incompressible flow parallel to the wall (because x + x = 2(a;i, 0,0:3)), and must 

be augmented by a suitable solution of Laplace's equation that accounts for the presence 

of the cavity (and in particular for the singular behaviour of G near the cavity edges) and 

10 
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describes the diversion of this flow into and out of the cavity mouth. The definition (3.1) 

of the KirchhofF vector enables this to be accomplished simply by replacing (x + x) • y by 

(x + x)-Y = 2x-Y. 

Thus, .   , , 

^" = -2;^'     ^-=       2.|xP       ' ^'-'^ 

and it remains to determine Cfu- 

The uniform incident applied pressure distribution Go over the mouth of a cavity of 

depth d produces vertically orientated compressional motions described by the following 

representations: 

G   =   acos{Ko{y2 + d)},    within the cavity in   -d<y2<0, (3.9) 

Gu   =   P<P*{y)+l,    in the cavity mouth y2 ~ 0, 
CM 

g»Ko|y|^    in free space above the cavity y2 > L^ 

(3.10) 

27r|y| 

where a, (3, j, 6 are constant coefficients, ^ = 6L is the area of the cavity mouth, 

and ip*{y) is the solution of Laplace's equation describing uniform flow from the mouth, 

normalized such that 

¥'*(y)   ~ i—r    \y\^d,   above the cavity (3-11) 
27r|y| 

~   ?/2 — ^)    y2^—d within the cavity, (3.12) 

i ~ VirA/^ is the 'end correction' of the mouth [3, 27]. 

Equations determining the values of the coefficients a, 13, 7, S are obtained by matching 

the various representations of G and Gu- Thus, in the region Ko\y\ < 1 just above the 

cavity mouth, equations (3.10) and (3.11) imply that 

BA 5A      ISKOA 
+ 7 = -; - 27r|y|      '        27r|y|        2-K 

from which it follows that (5 = y0 and 7 = -i^KOA/27T, and therefore that 

GM = l3((p*iy)-^-^),    in the cavity mouth. (3.13) 

11 
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Similarly, within the cavity the representation (3.9) must match just below the cavity 

mouth with the continuation of G = Go + G'M + GD given by (3.8) and (3.13). Now Y must 

decrease exponentially fast with distance into the cavity ([28], Section 66), and therefore 

(using (3.9) and (3.12)) 

acos{Kod) - ocKoV^sm{Kod) = P (y2 - ^ ^j + Go, 

from which it follows, in particular, that 

iKoA\ e''=°l'^l / /        1 ,    iKoA\ ^ / _i^\e^//_^_^ 
GM   ~   [V^[y)       27r J27rlx|/  V«;<,tan(M) 27r 

~   r/^^       2Tr ) cos{Ko{d + £ + iKoA/27r)}27r\x\- 

The steps in the derivation of this approximation for Gu are strictly valid only for a 

deep cavity (so that «;„£, KIA/2IT < 1), but if necessary it may be assumed that the values 

of e and A are suitably adjusted to ensure the validity of the second line of (3.14). The 

depth mode resonance frequencies are determined by the zeros of the cosine term in the 

denominator of the second line of (3.14). The lowest order mode occurs at the complex 

frequency satisfying 

that is for ■   ^ , 
Tvd ITT Ad ('^^<^'\ 

""    2{d+i)~ 8id+ey ^' ^ 
The real part is the usual expression for the lowest order depth mode for a cavity whose 

depth d is augmented by the end correction £, which represents the effective length by 

which the cavity must be extended to account for the inertia of fluid above the mouth of 

the cavity also set into reciprocating motion by the cavity resonance; the imaginary part 

accounts for the damping of this mode by radiation into the fluid. 

Tarn [29] has shown for the case of two-dimensional rectangular cavities that the 

frequency of the lowest order mode is well represented by (3.15) even for d/L as small 

as 1, for a suitable choice of the value of £. For deep cavities we can use Rayleigh's [27] 

approximation 

^^™. (3.16) 

12 
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For the purpose of the numerical illustrations given below for the moderately shallow case 

of rf/L = 0.5 it will be sufficient to use {3.16) - in practice precise values of i can always be 

derived from a numerical simulation of the acoustic mode. 

The complex factor in the argument of the cosine term in (3.14) increases rapidly with 

/Co, showing that higher order modes of the cavity are strongly damped by radiation losses. 

Thus, we can anticipate that only the lowest order 'Helmholtz resonator' mode (3.15) of the 

cavity will be of any importance in applications to cavity flow-noise, although this is not 

persued further here. 

Hence, substituting (3.8) and (3.14) in (3.5), and using the inversion formula (3.3), it 

follows that for y in the neighbourhood of the cavity mouth and x in the acoustic far field, 

G(x,y,i- r)   ^   -^ r (Go + GM + GD)(X,y,a;)e--(*-^+^(^-^)/-)rfc., 
Ill J-oo ^ ' 

- ^ y""   f /   «.   ^       iKoA\ KoSm{Kod) 
. ~    (27r)2|x| J-oo \   ~V ^^'       27r ) cos{Koid + £ + iKoA/27r)} 

_  ^^°^ • ^ I  g-M*-r-|xl/c„+M.(X-Y)/co) ^ (317) 

|x|      J 

To interpret this result, observe first that cavity resonance corresponds to Kod ~ 0(1). 

At such frequencies the second term in the brace brackets of the integrand, involving Y, 

is not important. The latter is becomes significant away from resonances, and then only 

when the source point y is close to a cavity edge. The basic assumption is that very high 

frequencies (in excess of the first cavity resonance) are irrelevant, and this will be the case 

when excitation occurs at low Mach numbers. 

3.2 The radiated sound 

The Green's function (3.17) now permits the solution of the aerodynamic sound equation 

(2.3), where B is given by (2.4) in the far field, to be expressed in the form [3] 

P-r.     Tf    ^, /(u;Av)(y,r)-^(x,y,t-r)dVr,     M ^ oo, (3.18) 
(1 -1- M cos ^) 7 ' dy 

where the integration is over all values of the retarded time r and the fluid region where 

the vorticity a; 7^ 0. There are no contributions from surface integrals over the wall and 

13 
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cavity, on which the fluid normal component of velocity and the normal derivative of G 

both vanish. 

It follows from this result that only the y-dependent part of the Green's function (3.17) 

need be used in (3.18). Therefore, for small Mach numbers and an acoustically compact 

source flow, the acoustic pressure given by (3.18) can be reduced to the form 

 Po  ((    A   \(      \   — r [        V^*(y)^oSin(M) 
^   ~    (27r)2(l + Mcos^)|x|y^'^    ^^^^'^''■ayy-oo\cosK(d + ^ + i/Co^/27r)} 

+ i^^ /iL _ MV Y| e-*'^{*-^-(l''l-^'')/'=<'> dujd?ydT,    |x| -^ oo. 

(3.19) 

3.3 Leading edge Kutta condition 

In a typical oscillatory cavity flow the region within, above and downstream of the cavity 

is filled with vorticity generated by shedding, principally from the leading edge region of the 

cavity. The length scales of the unsteady hydrodynamic motions induced by this vorticity 

are comparable to the cavity length L, but the characteristic extent of a coherent region 

of vorticity is usually very much smaller. This means that the main contributions to the 

volume integral in (3.19) are from those regions where V(/?* and VYj (i = 1, 3) vary rapidly, 

since /(u; A v)(y, r) d^y '^ 0 in regions where Vy?* and Vlj can be regarded as constant or 

as varying very slowly relative to the length scale of the vorticity. 

It follows that the cavity edges at which V<^* and Vi^- become infinite are the main 

sources of the cavity radiation, and a good estimate of the value of the integral can therefore 

be obtained by expanding these derivatives about these edges.   In doing this we can 

explicitly discard any contributions from the leading edge of the cavity, because the Kutta 

condition ensures that acoustic excitation by cavity vorticity interacting with this edge 

is inhibited by the shedding of fresh vorticity [2, 3, 30 - 32]. Similarly, the contributions 

from the side edges of the cavity (parallel to the mean flow direction) are small, because 

the vortex source w A v convects predominantly in the mean flow direction so that its 

interaction with the edge is effectively invariant with time (i.e. it is 'silent'). We therefore 

conclude, in accordance with all previous observations, that it is primarily the trailing edge 

of the cavity that is responsible for the radiated sound. 

Recall that Yj (i = 1, 3) may be interpreted as the velocity potential of a uniform flow 

over the cavity in the j-direction. This means that IVI3I < |VFi| at the cavity trailing 
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edge, and therefore that the contribution from F3 in (3.19) can be discarded. If we now 

introduce a 'strip theory' approximation for Fi in the immediate vicinity of the edge, by 

equating it to the corresponding velocity potential for flow over a two-dimensional cavity, 

which is readily found by conformal mapping, we find (for details see [3]) 

L 3 
Yi{y) ~ CiLsRe^^l^,    where    z = yi- — -\-iy2  and Ci = - 

where /i is the solution of the equation 

K(l - /i) - E(l -fi) _d 

(l-f^) 
6E(/x) J 

(3.20) 

(3.21) 

and K(^) = j} dX/y/l - ^sin'^ X, E(^) = j} y/l - (sin"^ XdX (0 < ^ < 1) are complete 

elliptic integrals [33]. 

A similar strip-theory calculation reveals that near the trailing edge 

E(/i) 
cp*{y)r^C2Y,{y),    C2 = 2 

47r(l - p) 
(3.22) 

P 

Hence, (3.19) becomes 

^° /(u;Av)(y,r).^(y)dV 
(27r)2(l + Mcos^)|xI 

C2 sin{Kod) 
X 

J-00   ° \cos{/C£ {d + i + iKoA/2 
—r-+ i{cos6-M)\ e-Mt—(|x|-M.x)/c„} ^^^^ 

(3.23) X -^ 00, 

where Fi is given by (3.20). 

3.4 Physical interpretation 

The first and second terms in the large brackets of (3.23) correspond respectively to 

monopole and dipole radiation from the cavity. The monopole character of the first term 

should be obvious from the discussion in §3.1. To understand the dipole nature of the second 

term note first that equation (3.23) is the acoustic pressure as measured by an observer fixed 

relative to the cavity, and therefore moving at speed U in the negative a;i-direction relative 

15 
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to the mean stream. Let R be the vector position relative to the cavity of an observer in 

a reference frame moving with the fiuid at the time of emission of the arriving sound. For 

such an observer the cavity appears to translate at speed U in the negative xi-direction. 

The coordinate systems x and R are related by (see Figure 2) x = R + MR, since an 

observer fixed relative to the fluid moves a distance U x (R/co) in the a;i-direction relative 

to the cavity during the time of travel R/cg of the sound from the cavity to the observer. 

The following relations are now easily derived for small M: 

COS O 
|xl-M-x=|R|,     |xl = |R|(l + Mcose),     ^os^ - M = ^^-p^^^—^,       (3.24) 

where 0 is the angle between the observer direction and the mean flow direction at the 

time of emission of the sound. 

Making these substitutions in (3.23) we find, for small M, 

r      ( ^2smJKod) icosO      \ ^_i^[t-T-m/co} ^^^ 
J-oo'^°\cOs{KJd-^^^iKoAl2'K)\ (l + McOSe); 

|R| -^ oo,     (3.25) 

where Fi is given by (3.20). This formula represents the radiation measured by a fixed 

observer from a uniformly translating cavity as being equal to the sum of a monopole 

amplified by the familiar two powers of the Doppler factor 1/(1 + Mcos0) together with a 

surface interaction dipole magnified by three Doppler factors (c.f. Crighton [34]). 

The strengths of the monopole and dipole sources are both determined by the value of 

the integral 
F{T) = p„ /(u; A v)(y, r) ■ ^(y) rfV, (3-26) 

which is just the force exerted on the cavity in the zi-direction (i.e. the cavity drag) when 

the unsteady flow in the vicinity of the cavity is regarded as incompressible [3]. Only the 

unsteady component of the drag actually contributes to the radiation, and it may therefore 

be assumed that the mean component of the drag has been excluded, and that henceforth 

F{t) refers only to the fluctuating part, having zero mean value.  Then, for example, 

16 
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equation (3.23) becomes 

^ g-ia-{t-(|x|-Mx)/c„} ^^      |x| _^ oo, (3.27) 

where 
F{uj) = ^        F{t)e^'dt (3.28) 

27r J-oo 

is the Fourier transform of the fluctuating drag. 
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4. NUMERICAL ILLUSTRATION 

4.1 Acoustic pressure frequency spectrum 

The unsteady drag F(t) may be assumed to be a stationary random function of the time, 

whose ('two-sided') spectrum ^(w), say, satisfies 

{F{u)F*{u;')) = '^{u)5{u)-w'), (4.1) 

where the angle brackets ( ) represent a time or ensemble average, and the asterisk 

denotes complex conjugate. For the low Mach number flows encompassed by the present 

theory ^(w) can be found from measurement or by numerical simulation of the essentially 

incompressible cavity flow.  When known it can be used in conjunction with (3.27) to 

calculate the far field acoustic pressure frequency spectrum, which will be denoted by 

#(w,x), and defined such that 

/■OO 

JO 

(4.2) 

Thus, using (3.27) and the definition (4.1), we find 

$(a;, x) ^{u^Wo 
27r2(l + Mcos^)2|x| 

C2 sin(«;o^) 
cos{Ko{d + £ + iKoA/2Tr)} 

+ i (cos 0- M) |x| -4- 00. 

(4.3) 

This formula gives the frequency dependence with respect to an observer fixed relative to 

the cavity. If the cavity is attached to a moving body, and the observer is at rest relative to 

the fluid, the observed frequency 9. will have the Doppler shifted value 

Q = 
OJ 

1 + Mcose' 

so that if (p2(R, t)) = /o°° $(fi, R) d^, then 

(4.4) 

$(fi,R) n^K 
27r2(l + Mcose)3|R|2 

C2 sm{Kod) + i cos 0 

cos{Ko{d + £ + iKoAl2Tx)}      (1 + M cos 6) 
1R| -> cxo, 

(4.5) 

in which u) and KO = oj/co are defined in terms of S7 as in (4.4). 

4.2 Analytical model for shear layer mode radiation 

To illustrate predictions of (4.3) a simple yet mathematically tractable model will now 

be considered for a shallow cavity subject to shear layer mode excitation. The principal 
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aerodynamic sources div(w Av) on the right of equation (2.3) are then confined to the region 

above the cavity mouth. In a first approximation the flow is parallel to the a;i-direction, so 

that the main contribution to the drag integral (3.26) (wherein Fi is given approximately 

by (3.20)) is determined by the spanwise component us of the vorticity. 

We therefore write 

iujAx){y,T)^i r Hk,kL,<^,y2)e'^''''^''^''~'''^dkdk^dcv,    ^2 > 0,   M <-,     (4.6) 
J—oo ^ 

where j is a unit vector in the a;2-direction, normal to the plane of the wall, and 

J^{k,kj_,u},y2) determines the distribution across the shear layer of harmonic constituents 

of the unsteady shear flow of frequency u and with streamwise and spanwise wavelengths 

respectively equal to 27r/A; and 2Tr/kj_. Inserting this formula into the integral of (3.26), and 

using the local approximation (3.20) for Fi, the yi-integral is readily evaluated to yield the 

Fourier transform F{u>) of the unsteady drag in the form 

Ff,,) = ^l£(Mp^ f nk,k,.,u;,y2) ^.(.,,3-f)-|%. dkdk^dy^dy^, (4.7) 

where the notation '-iO' implies that the branch cut for {k - iO)5 is to be taken from k = 0 

to +ioo in the upper half-plane. 

This result can be cast in a more useful form in terms of the hydrodynamic pressure 

fluctuations ps, say, that the same flow would exert on the rigid wall in the absence of the 

cavity. This is usually called the 'blocked surface pressure', and in a first approximation 

may be identified with the (measurable) wall surface pressure fluctuations just downstream 

of the cavity. At low Mach numbers we can regard this pressure as that generated by the 

shear layer vorticity when the flow is incompressible, and it is therefore determined by the 

incompressible form of equation (2.2) 

V^B = -div(aj A v),   X2 > 0,   where Ps = poB on X2^0. (4.8) 

When a; A V is given by (4.6) a routine calculation [3] yields 

Ps^ r Ps{k,k^,u)e'^''y'+'^y'-''*Ukdkj_dLO, (4.9) 
J—oo 

where 
Psik,k^,u) = ^fnk,k^,u,y2)e-^''^'l^^y^dy2. (4.10) 
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Now k ~ u/Uc at those values of the wavenumber k where the blocked pressure Fourier 

amplitude Ps{k, kj_,u) is significant. Because the motion over the cavity can be regarded 

as locally two-dimensional, the corresponding typical values of the spanwise wavenumber 

k± < k. Thus, {A;^ + k\}2 can be replaced by jA;| in the exponential of (4.10), and it is then 

deduced from (4.7) that 

Fju;) ^ ^^'^f^'   fi^^l^e^i^^y^-^Ukdk^dy^. (4.11) 
\/3       •/    (A; - iO) 3 

For stationary random flow we also have [3] 

(ps{k,k^,uj)p:{k\k'^,u'))=P{k,kuu^)S{k-k')5{k^-k'j_)5{u-u;'), (4.12) 

where P{k,k±,,u}) is the blocked pressure wavenumber-frequency spectrum.  Hence, by 

forming the product {F{UJ)F*{U;')) from (4.11), using (4.12), and making the further 

assumption that the spanwise correlation length of the unsteady motions is small compared 

to the cavity width 6, we deduce from the definition (4.1), that 

<p(„)«!5SE!(iMr£(Mi^, (4.13) 
3 J-OO \k\3 

and therefore that the far field acoustic pressure spectrum (4.3) can be written 

4Cfr^(§)feLi/cg 
^^^'''^   ~   37r(H-Mcos^)2|x 

 —-^  ,,—rr+ i(cos6'-M) 
cos{Ko{d + £. + iKoA/2Tr)} 

r°° P(k,0,oj)dk     ,  . ,. ..s 
^   / ,,4        >    N^-oo. (4.14) 

J-oo        |A;|3 

The functional form of P(A;, Q,LO) can in principle be estimated from measurements of the 

wall pressure fluctuations just downstream of the trailing edge of the cavity, provided it is 

permissible to assume that the statistical properties of the shear layer motions near the 

trailing edge of the cavity are well approximated by those immediately downstream of the 

cavity. 

As an alternative approximate procedure, however, it will be assumed that P(A;,0,w) is 

sharply peaked a.t k = u>/Uc, which is the expected behaviour when the dominant vortical 

disturbances convect at speed Uc- The integral in (4.14) may then be evaluated by replacing 

|A;| by uj/Uc in the denominator, and setting 4$pp(w)/7r = J^^P{k,0,u)dk, where %p{oj) 
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is the frequency spectrum of the wall blocked pressure fluctuations, and 4 < 6 is the 

spariwise correlation length. Therefore, 

$(w, x) 
37r2(l + Mcos^)2|x|2    (w/t/,)! 

C2 sm{Kod) 

cos{Ko{d + £ + iKoA/2n)} 

x| —)■ 00. 

+ i {cos 6 - M) 

(4.15) 

Consider a case (typical of low Mach number flow over a shallow cavity) where the 

pressure fluctuations near the cavity peak at the frequency of the second Rossiter mode, 

near /L/C/ = 1.  Let the functional form of ^pp{(jj) be approximated by the following 

empirical formula [3] for turbulent boundary layer flow 

%,{u){u/5:) ^,    {us.iuy 
ap = 0.12,   4 

lAUc 

to 
(4.16) 

In this formula 5* is the eff'ective displacement thickness of the boundary layer flow, biit 

will be assigned the value 

6. = ^, (4.17) 

to ensure that the spectral peak occurs at fL/U = 1. The velocity v^ is the nominal friction 

velocity of the wall flow, but its precise value is not required for the present illustrations. 

In non-dimensional form we may now write 

{PovinLMfl 37r2 'm 
M2(a;5,/C/)t 

{i + Mcosey{{i^6juy + aiY^ 
C2 sin(/Co<^) 

cos{Ko{d + i + iKoAl2-K)} 
+ z(cos^-M) 

(4.18) 

Thus, the mean square acoustic pressure scales as {poU^)^M^, and the overall acoustic 

intensity varies as poU^M^.  This is the expected behaviour for an aeroacoustic dipole 

source; in our case the source is modified by the cavity monopole, but we shall see below 

that the maximal strength of the monopole is of the same dipole order. 

Typical plots of the far field acoustic spectrum 

10 X logio 
^uj,x){U/5.)   /5.6Cfr^(|)    S.. 
{PovinLl\x\fl        STT^        \L "t 'Uc 
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are illustrated in Figures 3 and 4 respectively for M = 0.01, 0.1 in the radiation direction 

0 = 30°. It is assumed that 

^ = 0.5,   - = 1,   y = 0.5,    for which Ci = 0.69,   C2 = 1.02. (4.19) 

Also shown for comparison is the model shear layer mode blocked pressure spectrum <^pp 

normalized as in (4.16), with a broad peak at the second Rossiter frequency {fL/U ^ 1). 

The very low Mach number case M = 0.01 is characteristic of underwater applications, 

provided the cavity walls are sufficiently rigid that structurally driven cavity modes are not 

important. The monopole peak occurs at the relatively high Strouhal number fL/U ~ 25, 

and its contribution is smaller than that of the spectrum maximum near the Rossiter mode 

fL/U = 1. At Strouhal numbers less than 10 the radiation is dominated by the drag dipole 

source - Mach number ('Doppler') effects are unimportant when M = 0.01, and this implies 

that the radiation directivity has the usual dipole peaks in the upstream and downstream 

directions, and that there is a radiation null in the direction normal to the wall. In practice 

the source spectrum $pp probably decays much faster than the boundary layer analog model 

(4.16) used in this calculation, and this would tend to suppress even further the higher 

frequency monopole radiation. 

The situation is very different at the higher Mach number M = 0.1 (Figure 4). The 

cavity mode resonance frequency jL/U ~ 2.5, and the monopole peak is several dB above 

the dipole peak at the Rossiter frequency (/L/C/ = 1), although it should be observed that 

the magnitude of this peak scales approximately in proportion to (poU'^fM'^, as for the 

dipole sound. The presence of this peak in the lower frequency region has a profound effect 

on the radiation directivity, as indicated in Figure 5, in which the magnitude of 

{PovmL/W 

is plotted against the radiation direction 6 for fL/U = 0.5, 1, 1.5, 2, 2.5, all curves being 

to the same scale. In Figure 4 it can be seen that the lowest frequency fL/U = 0.5 is 

sufficiently far from the monopole peak to be effectively uninfluenced by the monopole. The 

directivity is therefore that of a dipole, peaking in the upstream and downstream directions, 

but subject to Doppler amplification by the mean flow, which causes the level to be larger 

in upstream directions. The dotted curves in Figures 3 and 4 represent the field of the 

monopole cavity mode alone, when the term i{cos9 - M) on the right of (4.18) is deleted. 

This shows that the influence of the monopole is confined to the immediate vicinity of the 
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resonance frequency. At higher frequencies the detailed directivity is determined by phase 

interference between the monopole and dipole, as well as the differences in the Doppler 

effects on both sources. Thus, at the spectral peak at /L/t/ = 2.5 this interference produces 

strong radiation preferentially in the downstream direction. 

An overall picture of the far field radiation is obtained by integrating the spectrum 

(4.18) with respect to w. The integral is convergent at tu = +oo, but contributions at 

very high frequencies are probably not representative. Therefore we depict in Figure 6 for 

M = 0.05, 0.1 the radiated pressure directivity when the integration is confined to the 

Strouhal number range 0.1 < fL/U < 10. In both cases this includes the frequency range 

in which the monopole is important. At the lower Mach number the directivity resembles 

that of a dipole, but peaking in the downstream direction owing to modifications produced 

by the monopole resonant response. The situation at M = 0.1 is similar except that there 

is significant radiation in directions normal to the wall. 
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5. CONCLUSION 

At very low Mach numbers the aerodynamic sound generated by nominally steady flow 

over a shallow wall cavity is dominated by dipole radiation produced by the unsteady drag 

force, the radiation peaking in directions upstream and downstream of the cavity. The drag 

force fluctuations are produced by the interaction of vorticity, in an unstable mean shear 

layer or periodically ejected from the cavity, with the trailing edge of the cavity. It is the 

principal source in underwater applications where M rarely exceeds about 0.01, provided 

it is permissible to ignore structural resonances associated with hydrodynamic forcing of 

flexing cavity walls. In such cases the lowest, rigid body cavity resonance frequency (the 

'Helmholtz' resonance frequency) tends to be large, and beyond the range where it can be 

effectively excited by the flow. At higher Mach numbers, however, the resonance frequency 

lies closer to the relevant 'Rossiter' modes of the unstable hydrodynamic flow over the 

cavity, and can then make a significant contribution to the radiation. 

The cavity resonance produces a monopole contribution to the sound and is governed by 

compressible effects in the cavity region. At low Mach numbers these are usually very weak, 

such that wherea;s the intensity of the drag dipole exhibits the usual aeroacoustic dipole 

strength ~ pgU^M^, the strength of the compressible-dominated, cavity source would vary 

as ~ poU^M^. However, when significant excitation of the cavity resonance occurs, say at 

Mach numbers exceeding about 0.05, the unsteady drag fluctuations also excite the cavity 

mode with a radiation intensity of the same order as the dipole sound. At these higher Mach 

numbers the radiation directivity at a frequency close to the cavity resonance is governed 

by the correlated interference between the dipole and monopole fields; at frequencies far 

removed from the resonance the directivity reverts to that of an isolated dipole. The overall 

sound power now tends to be uniformly distributed in direction; in particular there is 

significant radiation in the direction normal to the wall, which is otherwise a radiation null 

for the dipole alone. 

The detailed results given in this chapter are for a moderately shallow cavity dominated 

by shear layer mode instabilities, of the kind usually associated with the Rossiter modes. 

However, the Green's function developed in §3 can also be used to determine the cavity 

radiation for very shallow cavities, where an unsteady hydrodynamic 'wake flow' wets 

the cavity base, and the motion is characterized by the quasi-periodic ejection of cavity 

vorticity into the main flow. This ejection produces a violent fluctuation in the drag, which 

determines both the dipole and monopole sources of sound. 
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Figure 1. Schematic configuration of nominally steady, high Reynolds number flow 

over a rigid, rectangular wall cavity of depth d and streamwise length L. 
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^  U 

->- U 

observer position 
when sound emitted when sound arrives 

Figure 2. Illustrating the relation between the coordinate systems x and R. 
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Figure 3. Acoustic pressure spectrum 
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( , equation (4.16)) peaking at the second Rossiter mode fL/U ~ 1, and the 

cavity 'monopole' radiation (•••). 

30 



Report No. AM 04-001 Boston University, College of Engineering 

L\J 
1   1 IIIIII 1    1   1 11111         1    1   1 11111         1    1   M li11 

0 M=0.1 x' 
e = 30° / ^PP 

(/I -10 -               / y\         ^ ^^ 
2 ^— »   \^(o),x) 
rs 

1 -20 / 
/ / '                 * \ 

-30 y/^ • monopole        •           ^v. 

-40 ^\   1 1 11 III 1.*    1 II 1*111        1   1 1 1 nil 

10 -2 10 -1 10 10^ 

fL/U 

Figure 4. Acoustic pressure spectrum 
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shown is the corresponding blocked pressure spectrum lOxlogio \^pp{U/6*)/{povl)'^j 

( ^ equation (4.16)) peaking at the second Rossiter mode fL/U ~ 1, and the 

cavity'monopole'radiation (•• •). 
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M = 0.1 
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Figure 5. Directivity 
$(a;,x)(C//5,) 

{PovX)\i^l\AY 
for a cavity of dimensions (4.19) for M = 0.1 and /L/f/ = 0.5, 1, 1.5, 2, 2.5 

when the shear layer blocked pressure spectrum $pp peaks at the second Rossiter 

mode /L/f/ ~ 1. 
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Figure 6. Directivity 10 x log^o ((p^(x,t))/p^) of overall sound radiated in the fre- 

quency range 0.1 < jLjU < 10 for M = 0.05, 0.1 for the cavity defined 

by (4.19). 
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CHAPTER 2 

WALL-CAVITY ACOUSTIC GREEN'S FUNCTION 

AT LOW MACH NUMBER 
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SUMMARY 

Analytical approximations are developed for the low Mach number, aeroacoustic Green's 

function for a rectangular or circular cylindrical open cavity in a plane, rigid wall. The 

formulae can be used to predict the sound radiated into the main flow from a knowledge 

of the hydrodynamic flow near the cavity.  At low Mach numbers the sound is a small 

by-product of the main flow, whose hydrodynamic properties can first be determined from 

observation or from a numerical treatment of the incompressible Navier-Stokes equations. 

Detailed predictions are made of the lowest order, open cavity resonance frequencies, and 

it is shown how a resonance is excited by the unsteady drag, and also by the lift or drag 

force experienced by a small bluff body placed in the flow close to the cavity. The cavity 

resonance frequencies are complex, with imaginary parts depending primarily on radiation 

damping, which can be sufficiently large for a shallow, open cavity, that a distinct resonance 

peak is absent from the acoustic spectrum - for a square cavity such peaks are predicted 

only when the cavity depth exceeds about half the cavity length. For very shallow cavities 

the efficiency of sound production by volumetric pulsations within the cavity is comparable 

to that of free field turbulence quadrupoles, and therefore negligible at low Mach numbers. 
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1. INTRODUCTION 

The sound produced by nominally steady flow at low Mach number M past a shallow wall 

cavity can be attributed to the combined fields of a monopole and a dipole source (see [1, 

2] and references cited therein). The dipole strength is equal to the unsteady drag, and the 

dipole radiation peaks in directions upstream and downstream of the cavity. It dominates 

the production of sound at very low Mach numbers, M < 0.1, say, and is therefore the 

most important source in an underwater flow (M ~ 0.01) over a cavity whose walls may be 

regarded as 'hydraulically rigid' (so that monopole sources generated by flexing of the cavity 

walls are absent). At higher Mach numbers (M - 0.1) unsteady forces on the downstream 

cavity wall excite the low order cavity depth (or 'Helmholtz') mode, which behaves as a 

monopole source. The monopole sound can exceed or be comparable to the dipole radiation 

over a range of frequencies close to resonance. 

Approximate formulae for calculating the radiation in terms of an assumed knowledge 

of the vorticity distribution near the cavity (or, equivalently, in terms of the fluctuating 

drag) were given in [2]. For a shallow rectangular cavity of depth d and streamwise length 

L (Figure 1), the resonant oscillations governing the monopole are heavily damped by 

radiation losses when d/L is smaller than 0.5. The damping and resonance frequencies vary 

significantly with d/L, and one of the objectives of the present chapter is to determine this 

dependence for typical cavities of rectangular and circular cross-sections, and to obtain 

corresponding explicit representations of the cavity acoustic Green's function that can be 

used to calculate the sound generated by flow-cavity interaction at low Mach numbers. 

To do this we shall consider first sound production by a point source at y near the wall 

cavity of Figure 1 in the presence of a low Mach number, high Reynolds number mean flow 

at speed U in the positive Xi-direction of the rectangular coordinates {xi,X2,X3), where 

both the wall and the cavity-interior surfaces are rigid. The coordinate origin is taken at O 

in the plane of the wall at the centre of the cavity, with the a;2-axis normal to the wall and 

directed into the main stream. For this ideal situation the point source is the only source of 

sound, so that the flow elsewhere must be irrotational. In particular the mean flow past the 

cavity must be regarded as irrotational, with steady mean velocity Uo = Uo(x), say, where 

Uo -> {U, 0,0) at large distances from the cavity. 

When M^ < 1 the mean fluid density po and sound speed Co may be taken to be constant 

throughout the flow [3]. To first order in M = U/co, the acoustic wave equation for the 
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unsteady component ¥?(x,i) of the velocity potential is then governed by [4, 5] 

subject to 

1^ = 0 on  S, (1.2) 
OXn 

where S denotes the rigid surface formed by the wall a;2 = 0 and cavity-interior surfaces, 

and Xn is measured in the normal direction on S into the fluid. The Green's function 

G(x, y, i - r) is the solution with outgoing wave behaviour of 

r 1  / a^      .„     „d 
cl 15*2 

-F2Uo-V^)-v4G = <5(x-y)5(t-r), (1.3) 

where dG/dxn = 0 on S. 

Functional forms for G are determined in this chapter for shallow cavities, incorporating 

the cavity monopole and dipole contributions. Details are given in Section 2 for a rectangular 

cavity, and summarized for the circular cylindrical cavity in Section 3. Application is made 

in Section 4 to determine the influence on cavity mode excitation of a bluff body in the main 

stream adjacent to the cavity mouth. It is shown how the open cavity Green's function can 

be modified to account for the presence of a body whose streamwise dimensions are small 

relative to the cavity diameter. It is also shown how the efficiency of cavity mode excitation 

rapidly decreases with decreasing cavity depth. 

The chapter is dedicated to Professor Alan Powell, who pioneered the theoretical and 

experimental study of the production of aerodynamic sound by low Mach number periodic 

flows [6]. 
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2. THE RECTANGULAR WALL CAVITY 

2.1 Taylor's transformation 

The irrotational mean velocity Uo(x) may be assumed to be incompressible when the 

Mach number is sufficiently small that M^ can be neglected relative to unity [3].  Its 

behaviour near the cavity depends on cavity geometry and can be expressed in the form 

Uo = V{U-X{x)},     U = (C/,0,0), (2.1) 

where X(x) = (Xi(x),0,X3(x)) is the wall cavity 'Kirchhoff vector' whose component 

Xj (i = 1, 3) satisfies 

V^Xj = 0,    Xj^xj as|x|->oo,   —^ = 0 on S. (2.2) 
OXn 

Xj{x) (j = 1, 3) is the velocity potential of flow over the wall and cavity that has unit 

speed in the j-direction at large distances from the cavity 

The Green's function equation (1.3) is simplified at low Mach numbers by making Taylor's 

transformation [4, 5] 

G(x, y, t - r) = -i- r G(x, y, a;)e-^-(*-+^-(^-^)/^")rfa;, (2.3) 
ATT J-oo 

where M = U/co, and Y = (Fi, 0, Y3) is the Kirchhoff vector expressed in terms of y. When 

terms ~ 0{M'^) and smaller are systematically neglected, G is found to satisfy 

(v2 + «2)G = <5(x-y),      |^=OonS, (2.4) 

where Kg = uj/co is the acoustic wavenumber. 

In aeroacoustic applications the source point y is near or within the cavity and the 

observer is at x in the acoustic far field. It is then usual to solve (2.4) using the reciprocal 

theorem (?(x,y,w) = G(y,x,w) [7]: the source on the right of (2.4) is regarded as placed 

at the distant, far field point x, and the reciprocal equation is solved for G(y, x, u) as a 

function of y in the neighbourhood of the cavity, with dG{y,ic,u))/dyn = 0 on S. The 

distant source generates a spherical wave with potential -e'''''''''"yl/47r|x - y|.  When 

the presence of the cavity is ignored the velocity potential near the wall is obtained by 

augmenting this spherical wave by the potential -e''^''\^~y^/4Tr\x - y| produced by an equal 
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image source at x = {xi,-X2,X3). The net velocity potential Go(y,x,w), say, 'incident' on 

the cavity may therefore be approximated (as a function of y) by 

„mo!x| ■        -\ ,    , X       _   .     , ■ 
Go(y,x,a;) « --m U-""'''-^ + e-'''°"y),    |x| -^ oo, where  n=r~   y = (t/i, -1/2, Vs)- 

47r X  ^ ' x| 
(2.5) 

To complete the determination of G{y, x, w) it remains to calculate the interaction of GQ 

with the cavity. 

2.2 Contribution from cavity oscillations 

In typical low Mach number flows the wavelengths of flow-generated sound will be 

comparable to, or much larger than, the cavity diameter. This is necessary for the effective 

excitation of low order cavity resonances, whose motions are well correlated over the 

cavity mouth.  When this happens the incident disturbance (2.5) will induce a gross 

reciprocating flow across the plane of the mouth with mean normal velocity Uc = UC{KO), 

say, corresponding to the excitation of a cavity depth mode Gc, where 

UcCOsUo{y2 + d)) 
Q \ ,    ..    ^    -rf<y2<0. (2.6) 

The motion produced above the cavity (in 1/2 > 0) by the cavity oscillation (with 

vanishing normal derivative on the wall outside the cavity) can be written 

C.      ir  ^f^'^'^ ,^(^^^^+fe3y3+..vAl^)^,^^^^      k'' = k\-^kl\ (2.7) 

where for real KQ and k branch-cuts for ^Ji^l - k"^ are chosen such that 

sgn{Ko)\Kl - fe^jl   for KI > k'^, 

U{ku kz) is the Fourier transform of the normal velocity in the plane of the wall. When 

KoL ~ 0(1) or smaller, a good first approximation is obtained by replacing the open face of 

the cavity by a massless piston, in which case 

Wc«4   _ (kxL\ _ (kzb ^(^^'^3)=(^/;e--.../;e--3,,3.^^ S[lr\, (2-9) 
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where A = bL is the cavity open area, and S{x) = sin(a;)/a;, and therefore 

i(27r)2y7_oo ^'^2 - A;2 

This formula for a baffled, rectangular piston is given by Morse and Ingard [8]. 

The piston velocity Uc is found by equating the mean (surface averaged) potentials at 

y2 = ±0, just above and below the cavity opening: 

_^Mx>si^^i r*      rl(e. + G.)   ^d,3, (2.11) 

where in the integral Go, Gc are given respectively by (2.5) and (2.10). This yields 

u _ i^oSin{Kod)S{KoLni/2)S{Kobn,/2)   e^ .^ 12) 
'^       {cos{K,od) - sin{Kod)T{KoL/2)}   '27r|x|' 

where ^ 

The function !F{n) is proportional to the complex radiation impedance of a rectangular 

piston in a plane wall [8]. 

2.3 Lowest order cavity resonance 

For a shallow cavity [d/L < 1) only the lowest order depth mode is likely to be 

significantly excited at low Mach numbers. The resonance frequencies correspond to zeros 

Ko of denominator in (2.12).  By hypothesis, the Green's function describes an entirely 

irrotational disturbance (produced by the point source) of the irrotational mean flow Uo 

past the cavity; the motion is necessarily stable and the zeros must therefore lie exclusively 

in the lower half of the complex /Co-plane. 

Introduce the notations 

z = Kod,    X = ^. (2.14) 

Then the complex resonance frequencies are the roots of 

cosz - T{iJ,)sinz = 0,    where  iJ. = Xz. (2.15) 
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When the cavity aspect ratio a = b/L is fixed, equation (2.15) determines 2; as a function 

z{X) of X = L/2d, and the change dz in such a root produced by a change dX in X 

satisfies 
dz ^ -zT (At) [216) 
dX     cosec'^z + Xr{n) 

where T'{fx) = dT{fj)/dfi is given by 

^V) = -S r 7V^^ rS'{Xcos^)S'ia\sin^) dd. (2.17) 
T^ Jo   {jx^ — y)2 Jo 

But T{ii) ^ 0 as X -> 0, in which case the nondimensional resonance frequencies 

revert to z^ = {n - |)7r, n = 0, ±1, ±2, ±3, ..., for a long tube open at one end. The 

corresponding value of the nth root Zn for X > 0 can therefore be found by numerical 

integration of (2.16) (using, say, a standard Runge-Kutta algorithm) subject to the initial 

condition 

Z^ZI^L-^T: at X = Q. (2.18) 

To do this the integral (2.17) must be evaluated numerically. The square root y/]F^^ 

in the integrand is defined as in (2.8) for real values of /i = XKgd and A = Xkd. This means 

that (for real // > 0) a branch cut may be assumed to extend from A = // to A = +ioo in 

the upper half of the complex A-plane.  Now JJ, = z{X)X travels along a path from the 

origin into the lower half-plane when equation (2.16) is integrated from X = 0 into X > 0. 

The branch point at A = // therefore moves into ImA < 0, requiring the contour for the 

A-integration to be displaced down into the lower half-plane, so that it always passes below 

A = ju. This is illustrated in Figure 2, which shows a typical trajectory of the branch point 

/x for n = 1; also shown is the integration contour used in these calculations, which was 

fixed and defined parametrically by 

A = t(l-ise-*/*''),    0<i<-hoo, (2.19) 

where s = 3.5 and ^o = 1-5. The contour passes below A = /x for 0 < X < 20 (corresponding 

to 0.025 < d/L < 00). 

The trajectories of the nondimensional complex resonance frequency KOL = UJL/CO 

calculated by numerical integration of (2.16) for a range of values of the cavity depth ratio 

d/L are plotted in Figure 3 for the lowest order depth mode (n = 1), and for the aspect 

ratios a = b/L = 0.5, 1, 2. The figure reveals the progressively important role of radiation 
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damping with decreasing values of the cavity depth d, evidenced by the corresponding rapid 

increase in magnitude of the imaginary part of KOL. This conclusion is confirmed by the 

numerical results in Table 1 for b/L = 0.5 and 1, when d/L smaller than about 0.4. 

b/L 0.5 1.0 

d/L KoL riKoL/2) .  K-oL T'{KOL/2) 

0.1 4.225-2.119Z -0.531 + 0.772i 2.774 - 2.114i -2.410 + 2.7592 

0.2 3.124 - 0.869i 0.235 + 0.806i 2.494-1.2702 -0.658 + 1.8022 

0.3 2.505 - 0.493i 0.459 + 0.693i 2.198 - 0.8172 -0.070 + 1.4172 

0.4 2.111 - 0.319i 0.569 + 0.604i 1.937-0.5542 0.220+1.1952 

0.5 1.834 - 0.222Z 0.634 + 0.5352 1.722 - 0.3942 0.390 + 1.0442 

0.6 1.625 - 0.162i 0.676 + 0.4812 1.547 - 0.2912 0.501 + 0.9322 

0.7 1.462-0.123i 0.706 + 0.437Z 1.404 - 0.2222 0.579 + 0.8452 

0.8 1.331 - omei 0.729+ 0.401i 1.285 - 0.1742 0.637 + 0.7742 

0.9 1.222 - 0.076i 0.746 + 0.370i 1.184-0.138i 0.681 + 0.7152 

1.0 1.130-0.06H 0.759 + 0.345i 1.098-0.1122 0.715 + 0.6652 

2.0 0.652 - O.OlSi 0.815 + 0.204i 0.640 - 0.0252 0.861 + 0.3982 

3.0 0.461 - O.OOSi 0.830+ 0.144Z 0.455 - 0.0092 0.900 + 0.2832 

4.0 0.356 - 0.002Z 0.836+ 0.11H 0.353 - 0.0042 0.917 + 0.2192 

5.0 0.290 - O.OOli 0.840 + 0.0922 0.287 - 0.0022 0.927 + 0.1822 

Table 1. Rectangular cavity depth mode resonance frequencies for n = 1. 

2.4 Behaviour near the cavity mouth 

The cavity response Gc is given exactly by (2.10) when a mass-less piston with normal 

velocity u^ is inserted in the cavity mouth, separating the interior and exterior flows. For 

the actual motion we shall assume that the mean normal velocity over the mouth is equal 

to Uc, and approximate the leading order 'depth mode' response of the cavity by setting 

Gc = Uaip*{y), (2.20) 

where d^p* /dy^ !=s 1 at 2/2 = 0 in the cavity mouth except close to the edges of the cavity. 

The function <p*{y) may be regarded as the exact solution of the Helmholtz equation 
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representing a source flow at unit mean normal velocity from the mouth of the cavity and 

satisfying 5^*/9y„ = 0 on S. At large distances from the mouth it represents a rapidly 

decaying monopole wavefield. In the 'compact limit' in which K^L -^ 0, (^*(y) reduces to a 

solution of Laplace's equation V^<^* = 0, and its local properties for any given cavity can 

be estimated by the methods of conformal transformation [3]. 

Go is given by (2.5) in the neighbourhood of Koy2 '^ 0 just above the cavity. It represents 

the potential of the incident wave unmodified by the cavity, but can be adjusted so that 

it also includes the influence of the non-resonant response of the cavity to an aeroacoustic 

source. This response depends on the unsteady drag on the cavity (parallel to the plane 

of the wall) and produces a dipole contribution to the scattered sound. The adjustment is 

made correct to an error ~ 0{Klyl) < 1 simply by replacing y by Y in the formula for Go 

(i.e. by replacing niyi 4- nzVz in the exponential by niFi + n^Y^ s n • Y) [5]. The modified 

Go then satisfies dGo/dyn = 0 on S. 

Thus, for y close to the cavity mouth, and for small or moderate values of KOL, we can 

write •   /I I    v^ 

G(x,y,a;)^ ,^-J-Y- + U,V*{Y), (2-21) 

where Uc is given by (2.12). By inserting this formula into the integrand of (2.3), we find 

1       /    .        |x-Y|     M-(X-Y)\ 

1        id  f'^    ^, . sin{nod)S{KoLni/2)S{Kobn3/2) ^_i^ft-r-M/co+M-(x-Y)/c.} ^^^. 

(27r)2co|x| dt 7-00 "^ ^^^ {cos{Kod) - sm{Kod)T{KoL/2)} 

|x|-^oo, (2.22) 

where in the first line we have used the far field approximation |x| - n • Y Ri |x - Y| when 

|x| —>■ CXD. 

The remaining integration in (2.22) can be evaluated by residues, the poles lying in the 

lower half of the complex w-plane at the roots of equation (2.15). Let K.^ (N = 1, 2, ...) 

denote the roots (in the lower right half of the complex plane) arranged in order of increasing 

positive real parts - so that «i corresponds to the values given in Table 1 for b/L = 0.5 and 

1. It is easily seen that to each KN there exists a corresponding root with negative real part 

equal to -K^ (where the asterisk denotes complex conjugate). Then 
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1      / Ix-Yl     M-(X-Y)V 

7r|x|aiV     \ Co C" / 

x7ee|<^^(y} d{cosec2(K^d) + (L/2d):F'(«jvL/2)} J 

|x| ^ oo, (2.23) 

where COM = CQKJV and V5^(y) denotes the value of (p*{y) evaluated at KO = KJV- 

In practical applications to low Mach number flow only the coherent, large scale resonance 

represented by the first cavity mode (N = 1) will be properly represented by this formula; 

it can be evaluated using the results given in Table 1. 
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3. CIRCULAR CYLINDRICAL WALL CAVITY 

The representation (2.6) also describes depth modes in the circular cylindrical cavity of 

Figure 4 in the presence of a rigid, mass-less piston over the cavity mouth. In the exterior 

region above the cavity [8] 

Gc = —iUrR rhOpMB-e-^V^dk,    r=4JV^ly,>^:        (3.1) 

where Jo and Ji are Bessel functions [9] and R is the cavity radius. 

Similarly, the representation (2.5) of the incident field in the absence of the cavity is 

unchanged. Then, the analogue of equation (2.12) for Uc becomes 

KoSin(/CoC?) ('i^i{i^on\\R)\ e ~l/Co X 

^'^ ~ {cos{Kod) - sin{Kod)T{KoD)} \    Kon\\R    ) 27r|x|' 
(3.2) 

where D = 2R'is the cavity diameter, 

jr(^) = i('l-^^^]-F^^'sin(/iCOSz9)sin2,5rf^, (3.3) 

and nil = ■ynf-|-n| (c.f. [8] Section 7.4). 

As before, the complex resonance frequencies correspond to the roots K^ (N = 1, 2, ...) 

of 

cos{Kod) — sin{Kod)T{KoD) = 0. 

This is solved by numerical integration of equation (2.16), in which we set z = Kgd, X = 

D/d, n = zX, with J^{ij) defined by (3.3), subject to the initial condition (2.18). Results 

are presented in Table 2 and Figure 5 for the lowest order depth mode KI. 

The Green's function for source points y near the cavity mouth then becomes (c.f. 

equation (2.22)) 

1       / |x-Y|     M-(X-Y)\ 

id f°° (p*{y)sm{Kod) f2Ji{Kon\iR)\     i^{t_T_|x|/c„+M(x-Y)/c„} 

/. 
dio 

{2iTyco\:x.\dt J-oo {cos{Kod)-sin{Kod)T{KoD)} \    KonuR    ) 

|x|-J-oo, (3.4) 
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d/D KoD r(Ko£>) 

0.1 3.122 - 2.183i -0.828+ 1.143i 

0.2 2.725 - 1.24H -0.171+ 0.749i 

0.3 2.351 - 0.770Z 0.048 + 0.588i 

0.4 2.045 - 0.511i 0.156 + 0.4942 

0.5 1.803 - 0.358Z 0.219+ 0.431Z 

0.6 1.611 - 0.262i 0.260 + 0.383i 

0.7 1.456-0.198Z 0.289 + 0.346Z 

0.8 1.328 - 0.153Z 0.311+ 0.317Z 

0.9 1.221 - 0.12H 0.327 + 0.292i 

1.0 1.130 - 0.098Z 0.340+ 0.271i 

2.0 0.652 - 0.021f 0.394+ 0.160i 

3.0 0.456 - 0.009i 0.408+ 0.112i 

4.0 0.355 - 0.003? 0.415 + 0.0882 

5.0 0.297 - O.OOOi 0.419 + 0.0742 

Table 2. Circular cylindrical cavity depth mode resonance frequencies for n 

and similarly, by residues 

G(x,y,i-r)   ^ 1 ,A_,_fe^ + MJ2L^' 
27r|x Co 

^^^^HA-.-M^M.(X-Y)- 
TT |x|9t N Co 

X He 
K!^n\\R    J d{cosec^{K,Nd)+ {D/d)T'{K,ND)} 

X -^ oo. (3.5) 

where wjv = CgK^, <plf{y) denotes the value of ^*(y) evaluated at KO = KN, and for A^ = 1 

the value of T'{KID) is given in Table 2. 
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4. EXCITATION OF CAVITY RESONANCES BY VORTEX SHEDDING 

4.1 Aerodynamically generated sound 

To illustrate the application of these Green's functions to study flow excited cavity 

oscillations we shall consider the generalized configurations depicted schematically in Figure 

6, of low Mach number, nominally steady flow in the Xi-direction past a rectangular wall 

cavity in the presence of a fixed, bluff body in the main stream adjacent to the cavity 

mouth. Of particular practical importance are spanwise-orientated cylindrical cross-beams: 

Figures 6a and 6b show cases where a cross-beam in the form of a circular cylinder is 

respectively situated centrally above the cavity mouth and just upstream of the leading 

edge of the cavity. Vortex shedding from this beam can be expected to excite the cavity 

resonance. 

The acoustic pressure p(x, t) at the far field point x at time t in fluid of mean density Po 

is given in terms of the flow velocity v(x, t) and the vorticity w(x, t) = curl v in the vicinity 

of the cavity by [2, 5] 

"" (1+M'COS^) /<""'^"y-"> • f (''•y-' -")''''''' w^-.    (") 
where the integration is over all values of the retarded time r and the fluid region where the 

vorticity w 7^ 0, and 6 is the angle between the observer direction and the mean stream, so 

that cos^ = ni. 

The Green's function in (4.1) must have vanishing normal derivative on all fixed surfaces 

in the flow. It can therefore be taken in the form (2.22) or (2.23) when the cross-beam is 

absent. Analytical details for a simplified model of this case were discussed in [2], where it 

was confirmed that the principal source of cavity noise was related to the unsteady drag 

experienced by the cavity, produced by pressure fluctuations on the back wall near the 

trailing edge (A in Figure 6a). The drag fluctuations generate both 'non-resonant' dipole 

sound, associated with the first, 5-function term on the right of (2.22), and monopole sound, 

corresponding to the excitation of the lowest order cavity resonance and accounted for by 

the second term in (2.22). 

4.2 Vortex shedding from an adjacent bluff body 

The more general cases shown in Figure 6, involving the cross-beam can be treated by 

simple extension of the Green's function (2.22), provided the cross-sectional area of the 
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beam is small. To fix ideas consider a beam of circular cross-section of radius Ro < L. In 

case (a) (Figure 6a), where the beam is above the mouth of the cavity, with its axis along 

xi = 0, a;2 = h, say, the functions (p*{y) and Y{y) of (2.22) are given in the neighbourhood 

of the beam by 

(p* ~ y2,    Yi ^ yi,    Ys « ya- (4-2) 

When KgRo < 1 the local behaviour of the Green's function in the immediate vicinity of 

the cross-beam is the same as when the fluid is treated as incompressible. We can therefore 

extend the validity of (2.22) and (2.23) to include the influence of the beam by augmenting 

the local approximations (4.2) by solutions of Laplace's equation that are negligible at 

distances » Ro from the beam, but which just ensure that dG/dyn = 0 on the surface of the 

beam. For a circular cylindrical beam this is equivalent to replacing ip* and Y = (Fi, 0,13) 

respectively by $* and y = (3^1,0,3^3), where 

The sound produced by the resonant response of the cavity to vortex shedding from the 

beam can now be obtained from (4.1) by substituting for G the second term on the right of 

(2.22) in which cp* is replaced by $*. The result can be written 

1 i_d /•°°     ,    sm{Kod)S{KoLni/2)S{Kobn3/2) 

(27r)2co(l -F- Mcos^)|x| di Loo    ^'^'{cos{Kod)-sm{Kod)T{KoL/2)} 

1 /"^ p,  .KoSin{Kod)S{KoLni/2)S{nobn3/2) 

27r(l-|-Mcos^)|x| i-oo    ^^    {cos{Kod)-sm{Kod)T{KoL/2)} 

^ g-Mt-M(i-Mcose)/c„}^^    |x|-^oo,        (4.5) 

P 

where 

F(r) = p„/(a;Av)(y,r).^(y)dV,    and   n^) = ^ J_^nr)e^^ dr. (4.6) 

In equations (4.4) and (4.5) we have neglected a contribution to dG/dy from the term 

M • Y(y) in the argument of the exponential in (2.22).  It is easily verified that the 

contribution from this term is 0{MKoh) < 1 smaller than the contribution from d^*/dy. 
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In these results $*(y) represents in the vicinity of the beam the velocity potential of an 

irrotational flow past the beam having unit speed in the a:2-direction at distances > Rg 

from the beam, and the first formula in (4.6) is therefore identical with that determining 

the unsteady force on the beam in the a;2-direction produced by the hydrodynamic flow near 

the beam (in particular by vortex shedding from the beam) [2, 5]. Hence, the contribution 

from the beam to cavity mode-excitation is produced by the fluctuating lift force F{t) on 

the beam. 

This, conclusion, however, is correct only for a beam placed above the mid-section of the 

cavity mouth. In the case illustrated in Figure 6b, where the beam is just upstream of 

the leading edge of the cavity (or equivalently, just downstream of the trailing edge), the 

function (p*{y)is the velocity potential of a flow that is essentially parallel to the wall in the 

neighbourhood of the beam. The modified potential $*(y) must therefore represent a flow 

past the beam parallel to the wall; the function F{T) defined by the first integral in (4.6) 

is then proportional to the force on the beam in the a;i-direction [5], so that the radiation 

by cavity resonances is now associated with the drag fluctuations on the beam. For other 

locations of the beam, between the edges of the cavity and above the mid-section, the 

direction of the net force on the beam responsible for the cavity oscillations will be inclined 

to both the mean flow and wall normal directions. 

4.3 Efficiency of cavity resonance generation 

Let $(a;,x) denote the acoustic far field frequency spectrum, defined such that 

roo 
(p2(x,i))=/    ^uj,x)dcj, (4.7) 

Jo 

where the angle brackets ( ) denote an ensemble average. If the unsteady exciting force 

F{t) on the beam is stationary random in time, with frequency spectrum ^FF{I^), then 

{F{U)F*{OJ')) = S{U-U')^FF{OJ). 

It follows that when the cavity resonance can be assumed to dominate the radiation, 

^("-) - 2.,x. :it(i.MP^' (^)'- {"¥) ^'-^>- W-- (-) 
where 

xb(   n (M)^sin^(M) UQ) 
^^'^'^~ \cosiKod)-sin(Kod)J'{KoL/2)\-'- \-J 
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In equation (4.8) the functions S{KoLni/2), S{Kohnzl2) determine the directivity of the 

sound. They are equal to 1 at low frequencies in all directions n = x/jx|, when the radiation 

is essentially omnidirectional, but become progressively peaked in directions normal to the 

wall when KOL > 1 (see [8] for graphical illustrations). The function "^{KOL) governs the 

efficiency with which the cavity resonance is excited. No resonances can be excited at very 

low frequencies (/Corf ^ 0), when ^(KOL) ~ {Kod^. In this limit the acoustic wavelength 

greatly exceeds the cavity depth and the amplitude of the cavity induced sound is the same 

as that of a relatively weak Lighthill quadrupole source [5, 10]. The force spectrum <^FF{'^) 

is expected to be large when the Strouhal number fRo/U ~ 0.1 (/ = a;/27r), and the cavity 

resonance will therefore tend to be preferentially excited for an appropriately large mean 

flow velocity [/, when this value of the Strouhal number corresponds to a frequency where 

^{KOL) is large. This occurs where the denominator in (4.9) is small. But, we have seen 

that the zeros of the denominator lie progressively far into the lower complex plane as the 

depth ratio d/L decreases, corresponding to increased radiation damping of the resonance. 

This is illustrated in Figure 7, which depicts the variation of '^{KOL) for a square cavity 

(6 = L) for real values of KO in the range where the first cavity mode might be expected to 

be excited. The real resonance frequencies can be approximately identified with the real 

parts of the frequencies given in Table 1 (or indicated by the large dots in Figure 3). Figure 

7 shows that a significant resonance peak occurs in "^(KOL) only when d/L exceeds about 

0.4. For smaller values of d/L, for very shallow cavities, the radiation damping is so large 

that a genuine resonance peak does not exist. When d/L > 0.6, however, the resonances 

become firmly established and excitation at the resonance frequency can be expected to 

supply a strong tonal contribution to the radiation field (the difference in peak levels 

between d/L = 1 and d/L = 0.6 is about 7dB, and about 12 dB between d/L = 1 and 0.4). 
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5. CONCLUSION 

The acoustic radiation produced by nominally steady, low Mach number flow over a wall 

cavity has two principal components. The unsteady drag produced by vortex-generated 

pressure fluctuations applied to the trailing cavity wall is a source of 'dipole sound', which 

radiates preferentially in directions parallel to the mean stream. These drag fluctuations 

can also excite volumetric fluctuations of fluid within the cavity, thereby contributing a 

monopole component of the sound. The unsteady lift and drag forces experienced by a bluff 

body adjacent to the cavity can also excite the cavity monopole. The unsteady lift (normal 

to the wall) is the dominant source when the body is located centrally above the mouth of 

the cavity; the contribution from the drag becomes significant when the body is close to the 

leading or trailing edge of the cavity, and becomes the principal cavity-mode source when 

the body is near the wall just upstream or downstream of the cavity. 

The Green's functions given in this chapter can be used to make quantitative predictions 

of the sound for rectangular and circular cylindrical cavities from a knowledge of the 

hydrodynamic flow in the vicinity of the cavity.  At low Mach numbers the sound will 

be a 'small by-product' of the hydrodynamic motions having a negligible back-reaction 

on the main flow, whose properties can therefore be derived from observation or from 

calculation based on an incompressible approximation to the Navier-Stokes equations. Only 

the low frequency cavity resonances are expected to be excited at low Mach numbers. The 

resonance frequencies are complex, the imaginary part representing dissipation associated 

primarily with radiation damping in the case of a shallow, open cavity.  The damping 

can significantly modify the nature of the volumetric response of the cavity, completely 

eliminating from the acoustic spectrum the presence of a distinct resonance peak.  Our 

numerical results for a cavity with a square mouth indicate that such peaks are likely to be 

present in the acoustic spectrum only when the cavity depth d exceeds about half the cavity 

length L. The strong radiation damping experienced by a cavity when d/L is small makes 

it impossible for the cavity to store significant resonant energy; volumetric pulsations of 

fluid within the cavity then represent a driven response due to broad-band external forcing 

by the unsteady flow. For a very shallow cavity the efficiency of the sound generated by this 

forced motion is comparable to that produced by a free field turbulence quadrupole, and is 

therefore negligible at low Mach numbers when compared to the dipole sound generated by 

the cavity drag. 

In practice, of course, the absence of a cavity resonance contribution to the far field 
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sound does not preclude strong tonal radiation from the cavity. The resonances in this 

case are governed not by the cavity volumetric dimensions but by the streamwise length 

of the cavity, which determines the 'Rossiter frequencies' [5, 11 - 13] associated with 

hydrodynamic oscillations involving vortex-edge interactions at the trailing edge whose 

feedback to the leading edge amplifies the production of shear layer vorticity at certain 

preferred frequencies. Very intense tonal radiation would be expected when the mean flow 

conditions cause the cavity resonance frequency and a Rossiter frequency to coincide. 
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Figure 1. Point source at y adjacent to a rectangular wall cavity of depth d and 

streamwise length L in the presence of low Mach number steady flow at 

speed t/in the Xi-direction. 
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Figure 2. Trajectory in the complex A-plane of the branch point at A = n{X) of 

y'y^'i _ x^ for n = 1 and b/L = 1 when X increases over the interval 

0 < X < 20; the integration paths in (2.15) and (2.17) must be displaced 

from the real axis onto the contour (2.18) passing below the branch point. 
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Figure 3. Rectangular cavity complex resonance frequency KQL for the lowest order 

depth mode n = 1 when the cavity aspect ratio a = b/L = 0.5, 1, 2.. 
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Figure 4. Point source at y adjacent to a circular cylindrical wall cavity of depth d 

and radius R in the presence of low Mach number steady flow at speed U 

in the a;i-direction. 
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Figure 5. Complex resonance frequency KOD of the lowest order depth mode n = 1 

for a circular cylindrical cavity of diameter D and depth d. 

58 



Report No. AM 04-001 Boston University, College of Engineering 

(a) 

■^ u 

-^u 
% 

(b) 

-^V 

■^U 

^2 
A 

Xi 

m 
A 

% 

I 
i mMM^^M^///////////. 
^  L  ^ 

m 

I 
'///, 

Figure 6. Excitation of cavity resonance: 

(a) unsteady lift fluctuations Fit) on an adjacent, centrally located bluff body, 

and unsteady drag produced by vorticity near the cavity trailing edge A; 

(b) unsteady drag Fit) on an adjacent body just upstream of the cavity. 
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Figure 7. The efficiency of excitation of the lowest order resonance is governed by 

^(      . {Kod^sin^JKod)  

^""^      |cosM)-sinM)^KV2)r 

whose variation with frequency is shown for a square cavity (6 = L) for 

d/L = 0.2, 0.4, 0.6, 1.0. (The curve for d/L = 1 is shown only in the 

interval 0 < KgL < 3 containing the peak of the first resonance.) 
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CHAPTER 3 

CAVITY MODE EXCITATION BY 

VORTEX SHEDDING FROM A CROSS-BEAM 
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SUMMARY 

An analysis is made of the tonal acoustic radiation produced by nominally steady, low 

Mach number flow past a shallow, rectangular wall cavity in the presence of a cross-beam 

in the flow adjacent to the cavity. At 'lock-on' the frequency of vortex shedding from the 

beam is equal to one of the resonant frequencies of the cavity. The sound produced by 

this vorticity is augmented by the presence of the cavity and is calculated for the lowest 

order resonance frequency of the cavity by using a Green's function derived by Howe 

{International Journal of Aeroacoustics 2, 347 - 365, 2003).  Except for beams of very 

small cross-section, the efficiency of the aeroacoustic coupling between the beam and the 

cavity depends on the position of the beam above the cavity. Our results indicate that the 

coupling is strongest when the beam lies above the cavity mouth between the cavity leading 

edge and the centre of the mouth. The analysis makes use of two alternative models of 

vortex shedding, involving an either array of discrete, rectilinear vortices or a continuous, 

time-harmonic vortex sheet in the wake of the beam. At lock-on each of these models 

supplies essentially identical predictions of the acoustic sound power radiated directly away 

from the cavity. 
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1. INTRODUCTION 

The generation of sound by a nominally uniform, irrotational mean flow usually occurs via 

mechanisms involving the production of vorticity [1]. In the particular case of steady flow 

at low Mach number past a shallow wall cavity the sound is associated with monopole and 

dipole sources (see [2, 3] and references cited therein). The dipole dominates the radiation 

at very low Mach numbers M < 0.1, say, and is the most important source, for example, in 

underwater flow (M ~ 0.01) past a cavity with 'hydraulically rigid' walls (so that monopole 

sources generated by flexing of the cavity walls are absent). The dipole is aligned with the 

mean flow direction and is equal in strength to the fluctuating cavity drag produced by 

vortex shedding; its radiation field peaks in directions upstream and downstream of the 

cavity. At higher Mach numbers (M ~ 0.1) shed vorticity excites the low order cavity 

depth (or 'Helmholtz') mode, which is equivalent to a monopole source of sound whose 

amplitude can greatly exceed that of the dipole at frequencies close to resonance. Very 

recent numerical studies of monopole excitation are discussed by Mallick et al. [5]. 

When the vorticity field and its motion are known the acoustic pressure p(x, t) at position 

X and time t can readily be calculated for low Mach number, high Reynolds number flow 

from the vortex sound equation [1] 

r dG 

In this formula v and a? = curlv are respectively the fluid velocity and vorticity, po is the 

mean density (assumed uniform), and G{x,y,t- r) is the appropriate aeroacoustic Green's 

function; for a rigid wall and rigid cavity interior surfaces G is required to have vanishing 

normal surface derivatives. The integrations in (1) are over all values of the retarded time 

r and over the fluid region where the vorticity u; 7^ 0. 

An approximate formula for G(x, y, t - r) was derived in [4] for radiation from a shallow, 

rigid rectangular cavity orientated with respect to the mean flow and coordinate axes as in 

Figure 1. The cavity has depth d and sides of lengths L and b respectively in the streamwise 

and spanwise directions, and the approximation was valid at sufficiently small Mach number 

that the principal resonant oscillations of the cavity could be identified with 'depth' modes, 

producing essentially coherent reciprocating flow across the mouth of the cavity. It was also 

shown in [4] how the utility of the Green's function could be extended to cover the case 

illustrated in profile in Figure 2, where a spanwise, rigid cross-beam is present in the flow 

adjacent to the cavity. 
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Vortex shedding from this beam can be strongly coupled to resonant oscillations excited in 

the cavity [6 - 9]. In Figure 3 the axis of the cross-beam lies along the line Xi = Xc, xi - Vc-, 

where the origin of coordinates x = {xi,X2,xz) (with corresponding unit vectors i,j,k) is 

taken at O in the plane of the wall at the centroid of the cavity mouth, with the a;2-axis 

normal to the wall and directed into the fluid, as in Figure 1. In the simple case when the 

cross-section of the beam is a square of side ^, strong coupling to the cavity occurs when 

the Strouhal number fi/U ~ 0.2 where / is a cavity resonance frequency and U is the 

mean flow velocity past the beam [1, 9]. In these circumstances vortex shedding from the 

beam and the resonant response of the cavity are locked together in a nonlinear fashion 

that results in relatively large amplitude radiation at or very near the resonance frequency. 

In this chapter we shall examine a simple model of vortex shedding from the beam in order 

to estimate how the efficiency of cavity mode excitation at 'lock-on' varies with the stream 

wise position of the beam, whether centrally located as in Figure 2, or located at positions 

near the leading and trailing edges. 

To do this we shall make use of the Green's function derived in [4] together with associated 

numerical predictions of the complex cavity resonance frequencies, where the imaginary part 

of the frequency accounts for the decay of a cavity mode as a result of radiation damping, 

which is large for shallow cavities.  The formal solution of the aeroacoustic problem is 

discussed in detail in Section 2, where the vortex wake of the cross-beam is modelled by a 

sequence of discrete, rectilinear vortices. Numerical results are presented (Section 3) for a 

cavity with a square mouth for several positions of the cross-beam. In Section 4 analogous 

predictions are briefly discussed for a continuous wake modelled by a time-harmonic vortex 

sheet. 
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2. FORMULATION 

Figure 3 depicts the general configuration of the beam and cavity, and the first of two 

simplified models of vortex shedding to be examined. It will be assumed that at resonance 

lock-on vortex shedding from the beam occurs periodically, and in the first instance the 

shed vorticity will be modelled by a sequence of equally spaced line vortices (parallel to the 

spanwise, x^ coordinate axis) of alternating strengths ±r and infinitesimal core radii. The 

vortices convect in the streamwise direction at constant speed Uc along a common path in 

the plane X2 = Vc, this is equivalent to assuming that the vortices are released into the flow 

along the line Xi = Xr = Xc + i/2, X2 = Vc spanning the rear face of the beam, as indicated 

in Figure 3. The principal dynamic effect of shedding is to cause fluctuations in the lift and 

drag on the beam [1,4]; only minor details of the time dependence of these fluctuations are 

affected by the location of the point of separation. 

2.1 The acoustic pressure 

Let the nth vortex be released at time t„ = UTO. The period of the whole motion is 2TO, 

with fundamental frequency /„ = 1/2TO, and the vorticity a;„ of the nth vortex can be 

written 

<jOr. = {-lT^^S{xi-Xr-Uc{t-tn))5{x2-ycMt-tn),    Xr = X^ + -, (2) 

where H is the Heaviside step function. The velocity at the core of the vortex is v = Ucl 

Therefore a>„ A v = Wnf/J, and the acoustic pressure p„, say, attributable to the nth vortex 

is given from equation (1) by 

p„(x,t) « -{-!)''PoVUc ir H(r - tn)^U,Xr + Uc{r - tn),yc,y3,t- T) dysdr.     (3) 
JJ-oo oy2 ^ 

This integral will be evaluated to determine the monopole component of the sound 

radiated from the cavity at lock-on. This would be essentially omnidirectional at very low 

frequencies, but at the moderate frequencies that characterise the lowest order cavity depth 

mode it can actually exhibit a small dependence on direction that is of no significance for the 

present discussion (see [4]). It will therefore be sufficient to calculate the monopole sound 

only in radiation directions normal to the wall. This is done by retaining the following 

component of the low Mach number approximation for G (from [4], equation (2.23)) 

G(x, y, t - r) « ^1 (H {[t] - r) cos{fi(M - r) + a}e-<W-^)) ,     |x| ^ oo,     (4) 
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where [t] = t - |x|/co is the retarded time, and Co is the mean sound speed. The function 

ip*{-x) (which has the dimensions of length) is that solution of Laplace's equation that 

represents the incompressible potential flow from the mouth of the cavity in the presence of 

the beam that would be produced by motion of the base of the cavity at unit speed in the 

positive X2 direction. 

The approximation (4) represents the response of the cavity at its lowest complex 

resonance (radian) frequency 

u = Q- ie, (5) 

values of which are tabulated in [4] for a range of values of d/L and for b/L = 0.5, 1. The 

length C (> 0) and phase angle a are defined by 

Ce''' = d 
2lud\      L    ,fuL 

Z) (6) 

where the complex valued function P is also tabulated in [4]. 

The integration in equation (3) with respect to yz is taken over the spanwise extent 

of the vortex. However, just above the wall the function dip*/dy2 decreases very rapidly 

with distance from the mouth of the cavity (like l/|yp), and this permits the spanwise 

integration to be confined to the width -6/2 < ys < b/2 of the mouth.  By similarly 

neglecting small 'end corrections' at 2/3 ~ ±b/2 compared to the contribution to sound 

generation by the section of the vortex above the mouth in IJ/S] < b/2, it is also permissible 

to use a two-dimensional approximation for (p*{y) ^ <p*{yi,y2)- This is very convenient, 

because in two dimensions Laplace's equation V^(/P* = 0 can be solved very easily for 

different positions of the cross-beam using a conventional 'spread sheet' programme on a 

personal computer [10, 11]. 

These remarks enable equation (3) for p„(x, t) to be rendered in the form 

p„(x,t) = (-1)"^^ (* " *" ~ ^) '    '^' ^ °°' ^^^ 

where 

P(t) = - :^^§-^\li{t)l^^{xr + UcX,yc)cos{^^^ (8) 

By setting t„ = UTO, it follows that the overall acoustic pressure p(x, t) in the far field 

becomes 1  i\ 

P(x,*) = ^  t{-l)'P{t-nT,-m. (9) 
Fl     n=-oo \ ^o } 

66 



Report No. AM 04-001 Boston University, College of Engineering 

2.2 The acoustic pressure frequency spectrum 

The acoustic pressure p(x, t) given by equation (9) is periodic with fundamental frequency 

fo = 1/2TO. The pressure spectrum is therefore discrete, and can be expressed in terms of 

the Fourier transform P{u}) of P{t) defined by 

1 fOO 

P{^) = TT /    PiJ^^'^'dt. (10) 

To do this we first write equation (9) in the form 

p(x,t) = ^ r Piu) { f; (-i)v-"^A ^M^-^)d^^ (11) 
|X|     •'-°o \n=-oo / 

and introduce the formula [12] 

g:(-ire'"-- = g^£^L-'^"+'M. (12) 
'o n=—oo 

The mean square acoustic pressure {p'^{x,t)), obtained by averaging over the period 2TO, is 

then found to be given by 

ip') = 8 (^)  Ji f: |p((2n + l)a;„)f,    where a;, = 2-nU = :^, (13) 

and this defines the frequency spectrum of the sound at resonance. 
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3. NUMERICAL RESULTS 

3.1 Configuration of the cavity and cross-beam 

Consider first the case of a cavity and beam for which 

b    ^   d   .   e 
1    ^ 

'   L 
1,     y = 0.2. 

LI 
(14) 

For these conditions the real and imaginary parts of the complex resonance frequency 9,-ie 

for the lowest order cavity depth mode are given in columns 2 and 3 of the first row of Table 

1. We shall assume that the frequency /o = a;o/27r of the periodic vortex shedding from the 

beam satisfies fo^/U = 0.2. At 'lock-on' Vt ^ Uo, which occurs when the mean flow Mach 

number M = U/co is given by 

Q,L/co 
M at   Q,^ Uo (15) 

(£) {¥) (f) 
i.e. at M Ri 0.17.  Table 1 lists this value and also (from [4]) the relevant value of the 

function T'{uL/2co) that occurs in the definition (6) of ^e^'*. The second row of Table 1 

gives corresponding values when the depth of the cavity is doubled, but the other dimensions 

are unchanged. 

d/L QL/co eL/co M r 
1.0 

2.0 

1.098 

0.64 

0.112 

0.025 

0.17 

0.10 

0.715+Z0.665 

0.861+Z0.398 

Table 1. Resonance conditions for the lowest order depth mode when h/L = 1. 

We shall calculate the cavity mode radiation at lock-on for five positions of the cross-beam 

{xc, Vc), labelled Case I - Case V in Table 2 

Case xjL Xr/L Vc/L 

I -0.8125 -0.7125 

II -0.5 -0.4 

III 0.0 0.1 0.2125 

IV 0.5 0.6 

V 0.8125 0.9125 

Table 2. Positions of the cross-beam. 
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3.2 Predictions for djL^ 1 

The cavity mode sound produced by a single vortex is represented by equations (7) and 

(8). The function i{>*{xi,x-^ in equation (8) has been calculated numerically for the different 

positions of the cross-beam.  Figure 4 depicts the variations of the derivative 9(/?*/^^2 

(which occurs in the integral on the right of (8)) along the vortex trajectories to the rear of 

the beam in Cases I - V. Also shown by the broken-line curve is the variation of df* Idx2 

when the beam is absent. These results suggest that, apart from its role in generating the 

vortex, the presence of the beam should not significantly influence the amplitude of the 

sound produced by the vortex in Cases I, IV and V, i.e. in those cases where the beam is 

ahead of the leading edge of the cavity, or near or downstream of the trailing edge. The 

beam produces a significant increase in the potential flow velocity d^p* jdx^ in Cases II and 

III (when the beam is near the cavity leading edge and over the central region of the cavity), 

and it might then be anticipated that cavity mode excitation will be particularly efficient. 

Evidently the magnitude of this increase depends on the 'blockage' provided by the beam to 

the reciprocating flow across the mouth of the cavity, a beam of small cross-section would 

produce proportionately smaller local increases in dip*/8x2- 

The pressure signature of the sound generated by the release of a single vortex is illustrated 

by the 'one vortex pressure' curve in Figure 5 (plotted against the nondimensional retarded 

time U[t]/L) for Case III, where the beam spans the centre of the cavity. This has been 

calculated by setting n = 0 in equations (7) and (8), and by taking the vortex convection 

velocity Uc = 0.7t/ [1]. The sound exhibits the dominant frequency ~ fi of the cavity mode, 

and decays after about four cycles because of radiation damping. Periodic forcing of the 

cavity at lock-on by the shedding of successive vortices produces the sustained periodic 

pressure signature also shown in the figure, and calculated from equation (9) of Section 

2. The amplitude of this wave is about four times the maximum for an isolated vortex; 

moreover it exhibits discontinuities at the retarded times at which vortices are released from 

the beam, at which times the beam experiences a discontinuous jump in lift and drag [1,4]. 

The overall acoustic pressure frequency spectrum is given by (13).   The function 

|P((2n + l)oJo)\^ is negligible except at its fundamental n = 0. The lower series of points • 

(labelled d/L = 1) in Figure 6 represent the variation of this peak or, equivalently, of the 

sound pressure level 
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for Cases I - V. These results confirm that the region of high efficiency of cavity mode 

excitation occurs when the beam is situated above the forward half of the cavity. The 

broken line interpolation curve indicates the efficiency for other positions of the cross-beam. 

3.3 Deep cavity: djL = 2 

The calculations have been repeated for a 'deep' cavity, where the depth d is twice the 

cavity length L, with resonance properties described by the second data row of Table 1. 

The corresponding sound pressure levels (16) are displayed in Figure 6 (•, upper curve) and 

are seen to be roughly 5 dB higher than for d/L = 1. The efficiency of sound production 

increases with increasing cavity depth.   According to Table 1, the radiation damping 

(determined by e) is much reduced for the deeper cavity; the resonant oscillations in the 

mouth of the cavity (i.e. the monopole source strength) can therefore grow to a larger 

relative amplitude. 
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4. CONTINUOUS VORTEX SHEDDING 

The overall pressure signature in Figure 5 exhibits a discontinuity every half cycle when 

a vortex is released from the beam. This behaviour is not, perhaps, unexpected, but in 

practice the relative magnitude of the discontinuities might be smaller because vortex lumps 

of one sign tend to be shed more smoothly over a finite time interval. These predictions 

for discrete vortex shedding may be compared with predictions in the opposite extreme in 

which vorticity is released continuously at frequency ojo {^ ^)- In this case the vorticity 

distribution in the wake (which replaces the succession of discrete vortices u;„ defined in 

(2)) can be taken in the form 

\^{xi- Xr) - u)ot\ 5{x2 -yc), (17) 

in which case vorticity of total circulation ±r is shed from the beam during each half-cycle 

in which the sine in (17) is ^ 0. 

Equations (1) and (4) may then be used to show that the monopole response of the cavity 

in the acoustic far field is represented by the pressure distribution 

^(-)-(^)(^)/r-h(^-"W) 
X cos(nT + a)e-'^ ~-{xr + y,yc)dydT, (18) 

oy2 

where [t] = t- |x|/co is the retarded time. 

The integration with respect to r can be performed analytically. By setting Wo = 0 at 

lock-on, we then easily deduce that (provided e <C fi) 

This is a time-harmonic acoustic pressure at frequency Q with no overtones. The dotted 

curve in Figure 5 is the non-dimensional pressure p{x,t)/{poTU/\x\) determined by (19) for 

Case III of Table 2 when d/L = 1. It is the continuous vortex shedding analogue of the 

solid, discontinuous overall pressure plotted in the same figure and produced by the periodic 

shedding of discrete vortices. 

The predicted overall acoustic wave amplitudes in Figure 5 are practically the same for 

the two extreme models of discrete and continuous vortex shedding from the cross-beam. 

This approximate correspondence is also evident from an evaluation of the sound pressure 
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level (16); the results for continuous shedding are plotted as the open circles in Figure 6 for 

d/L = 1, 2. The sound pressure level for continuous shedding is uniformly about 2 - 3 dB 

below that predicted for discrete vortices for all positions of the beam. 
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CONCLUSION 

Tonal acoustic radiation produced by nominally steady flow past a shallow, rectangular 

wall cavity is often amplified by the presence of a cross-beam in the flow adjacent to the 

cavity. At lock-on the frequency of vortex shedding from the beam is equal to one of the 

resonant frequencies of the cavity. With the exception of cases where the diameter i of the 

beam is very much smaller than the cavity length L, the efficiency of coupling between the 

beam and the cavity depends on the position of the beam relative to the cavity opening. 

The results of this chapter (for ijL = 0.2) indicate that the coupling is strongest when 

the beam lies in the forward half of the opening, towards the cavity leading edge. This 

conclusion is based on predictions of the radiation for two alternative and extreme models 

of vortex shedding from the beam (periodically shed discrete vortices and continuously shed 

time-harmonic vorticity); it also appears to be independent of cavity depth provided the 

mean flow Mach number is small at lock-on (say less than about 0.2). 

It should be remarked, that at lock-on the motion of the mean shear layer spanning 

the mouth of the cavity must include components oscillating at the same frequency as the 

vortex shedding from the beam. The contribution of the sound generated by this motion is 

not included in our analysis; it arises principally from the interaction of shear layer vorticity 

with the downstream region of the cavity [1, 3], which could well be enhanced when the 

beam is near or downstream of the cavity trailing edge. Also, the overall amplitude of the 

sound at lock-on depends on the magnitude of the circulation F of the shed vorticity. At 

low Mach numbers this is likely to be controlled by nonlinear mechanisms that are not 

influenced significantly by the compressibility of the flow, although there may be some 

dependence on the location of the cross-beam. This dependence on beam position and the 

possible couplings with the mean shear layer will need to be determined by experiment or 

by large scale numerical simulations of the kind described recently by Mallick et al. [5]. 
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Figure 1. Rectangular wall cavity of depth d and streamwise length L in the presence 

of low Mach number steady flow at speed U in the a;i-direction. 

75 



Report No. AM 04-001 Boston University, College of Engineering 

^2 

X3 

-^ Xj 

-^U 

-^U 

cross 
beam m 

o 

I 
% 

^ 

Figure 2. Vortex shedding from a square-sectioned cross-beam adjacent to the 

cavity. 
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Figure 3. Simplified model of periodic vortex shedding from a square-sectioned beam 

whose axis lies along Xi = Xc, X2 = Vc- The beam is shown positioned for 

Case II of Section 3. 
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Figure 5. Predicted acoustic pressures when the cross-beam is directly above the cav- 

ity (Case III of Table 2) and d/L = 1:  , overall pressure signature 

of the lowest order cavity mode radiation when the wake consists of a se- 

quence of discrete, rectilinear vortices;  , the exponentially damped 

cavity mode radiated pressure produced by one vortex; ••••••, the overall 

pressure signature for the continuous vortex wake of Section 4. 
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Figure 6. Predicted dependence of the sound pressure level 10xlogio((p^)/(Porf^/|x|)^) 

on the streamwise position of the cross-beam for djL = 1,2 when the wake of 

the cross-beam is modelled by discrete, rectilinear vortices {• • •). The open 

circles are the corresponding predictions for the continuous, vortex sheet wake 

of Section 4. 
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